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Q.H. Ngô, N. Gargava, S. Goodenough.

CIP seminar,
Friday conversations:

For this seminar, please have a look at Slide CCRT[n] & ff.
1 / 41



Goal of this series of talks

The goal of these talks is threefold

1 Category theory aimed at “free formulas” and their combinatorics
2 How to construct free objects

1 w.r.t. a functor with - at least - two combinatorial applications:

1 the two routes to reach the free algebra
2 alphabets interpolating between commutative and non commutative

worlds

2 without functor: sums, tensor and free products
3 w.r.t. a diagram: limits

3 Representation theory: Categories of modules, semi-simplicity,
isomorphism classes i.e. the framework of Kronecker coefficients.

4 MRS factorisation: A local system of coordinates for Hausdorff
groups.
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CCRT[15] Evolution equations in differential modules.

Disclaimer. – The contents of these notes are by no means intended to
be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.

1 Definition of differential modules

2 Definition of evolution equations

3 Computations with differential modules

4 Some concluding remarks
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Lemma 1.7 in [11] revisited./1

Definition (Differential module)

Let (k, ∂) a differential ring. A differential module M over (k, ∂) is a (in
general left-) module over k〈∂〉a (see [3] Ch II §1.1). This is equivalent to
the data of

1 A k-module M

2 ∂M ∈ EndZ(M) such that for all (a,m) ∈ k×M
∂M(a.m) = ∂(a).m + a.∂M(m)

aWe note here k〈∂〉 instead of k[∂] as we will have to consider, for instance,
C[z]〈∂〉 for which the notation C[z][∂] could be confusing.

Definition (Evolution equation)

Let M be a (finite or infnite dimensional) differential module. We will call
evolution equation, in M an expression

Y ′ = Φ(Y ) with Φ ∈ Endk(M) (1)
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Lemma 1.7 (revisited)/2

Lemma 1.7 (rev)

Let M ∈ Diffk (k is a differential field with field of constants C = ker(∂)) and
Φ ∈ Endk(M), we suppose that

(Yi )i∈I ∈ M I is a family of solutions of the some evolution equation
of type (1)

Then, TFAE

1 (Yi )i∈I is C -free

2 (Yi )i∈I is k-free (for the structure of k-field).

Proof

2 =⇒ 1) being obvious, remains to prove (1 =⇒ 2). To this end, let R be the
module of k-linear relations, i.e. we consider the map Λ : k(I ) → M defined by
(Yi )i∈I

a such that Λ(α) =
∑

i∈I α(i)Yi (then R = ker(Λ)).

aSee [3] ch II §1.11 def 10.
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Proof of (revisited Lemma) 1.7 cont’d

Either R = {0} and we are done or R 6= {0}. In this case, we take
β ∈ Rr {0} with minimala support F 6= ∅ and i0 ∈ F .
Due to the fact that k is a field, we can take β(i0) = 1. Then

(LR) Yi0 +
∑

i∈Fr{i0}

β(i)Yi = 0

(∂) Y ′i0 +
∑

i∈Fr{i0}

β(i)Y ′i + β(i)′Yi = 0

(Φ) Φ(Yi0) +
∑

i∈Fr{i0}

β(i)Φ(Yi ) = 0

aFor cardinality or inclusion.
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Lemma 1.7/3

We perform (2)-(3) (repeated below)

(∂) Y ′i0 +
∑

i∈Fr{i0}

β(i)Y ′i + β(i)′Yi = 0 (2)

(Φ) Φ(Yi0) +
∑

i∈Fr{i0}

β(i)Φ(Yi ) = 0 (3)

and get
∑

i∈Fr{i0} β(i)′Yi = 0. But, as F is minimal, the family

(Yi )i∈Fr{i0} is k-free. This entails β(i)′ = 0 for all i ∈ Fr {i0} and then

β(i) ∈ C , from hypothesis, we get Fr {i0} = ∅ and F = {i0} i.e. Yi0 = 0.

This is impossible because of hypothesis 1 ((Yi )i∈I is C -free). CQFD
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Example 1: Vector fields on the line.

1 (Vector fields on the line) In physics and computer science literature, there is
a lot of confusion between evolution equations,

a) well defined ?
b) that can be stated ?
c) that can be integrated ?

2 These problems can be cured

a,b) making precise the spaces and transformations Φ.
c) examining the conditions of integration.

3 A banal and trite commonplace is the formula

et
d
dx (f )[x ] = f [x + t] (4)

freely and lightheartedly repeated everywhere which soon becomes as a
philosophical moto “Exponential of t× derivation”=”displacement by t”.
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Example 1: Vector fields on the line./2

4 This formula is true in some frameworks and false in others. Let
D ∈ der(A) where A is some (associative) algebra. The evolution
equation reads

d

dt
(Y ) = Y ′ = t.D.Y ; Y ∈ A ⊂ End(some space) (5)

5 Firstly, if D is locally nilpotent exp(t.D) is a one-parameter group of
automorphisms of A (Ex. A = C[x ], D = d

dx leads to formula 4).

6 With A = C∞(R,R) the evolution equation can be stated i.e. the
two members of (4) are well-defined, but this formula is false (take
any Schwartz test function).

7 With A = Cω(R,R), the formula is true.
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x

y

Figure: Schwartz Cω test function. Piecewise defined: for x /∈]− 1,−1[, f (x) = 0

(red) and for x /∈]− 1,−1[, f (x) = 10 exp(
1

x2 − 1
) (blue). Formula (4) is false.

Indeed for every x in the red domain and t = −x , in

et
d
dx (f )[x ] = f [x + t].

we have LHS(t, x) = 0 whereas RHS(x , t) = 10.
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Example 1: Vector fields on the line./3

1 For suitable spaces (another talk, see also [6])

et.x
d
dx (f )[x ] = f [et .x ] et.x

2 d
dx (f )[x ] = f [

x

1− t.x
]

et.x
3 d
dx (f )[x ] = f [

x√
1− 2.t.x2

] et.x
r+1 d

dx (f )[x ] = f [
x

r
√

1− t.r .x r
]
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Application (Van der Put).

4 Let (R, ∂) be a (commutative) differential ring, containing the differential
field k (we supposea C = ker(∂) ⊂ k). We consider L ∈ k〈∂〉 of degree n.

L = an.∂
n + . . .+ a1.∂ + a0 (6)

then, if R is without zero divisors, the set of solutionsb L.y = 0 is a k-vector
space of dimension ≤ n.

aThis is not granted (Ex. R = C[x , y ], ∂ = d
dx
, k = C,C = C[y ]).

bSolnR(L) in [11].

Proof. – (Sketch) Embed R Frac(R) as differential rings and apply [11]
Lemma 1.10.

Remark. – The result is no longer true if R has zero divisors (see below).
Example. – R = (H(Ω), ∂) where Ω is not connected. Take Ω = Ω1 ∪ Ω2

(Ωi connected components) and y ′′ + y = 0, the space SolnR(L) is of
dimension 4. With basis [cos(z).1Ω1 , sin(z).1Ω1 , cos(z).1Ω2 , sin(z).1Ω2 ].
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Counterexamples cont’d

5 One could argue that, in the preceding example, the ring of constants is not
a field. Indeed

ker(∂) = C.1Ω1 ⊕ C.1Ω2

6 We now consider an example coming from algebraic geometry (coordinate
ring of xy = 0). Let us consider, in C[x , y ], the ideal Jxy generated by xy (it
has {xpyq}p,q≥1 as a basis) and ∂ = x d

dx + y d
dy . One can check that Jxy is

a differential ideal for ∂. Then

A = C[x , y ]
/
Jxy = C.1⊕ C+[x ]⊕ C+[y ]

is a differential algebra. For N ≥ 1, the equation

0 = Y ′ − N.Y = (∂ − N).y

has a two dimensional C-vector space of solutions

V = C.xN ⊕ C.yN
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Examples cont’d and unfold

7 In order to obtain correct arrows for the set annihilated by ∂ − 1 we
would have to localize by the wronskian of one set of solutions of
dim = 1 (here {x} or {y}) but each of these wronskians are zero
divisors, so the correct theory will imply

1 Non-zero divisors
2 Normalization (monic differential operator and localization by

wronskian). We go back to our favorite module M(x2
0 x1x0x1) generated

by the full vector space of solutions of Lx1x0x1x2
0
.y = 0 of dimension 6.

8 Now, we will need a lemma which is very useful to compute
complicated wronskians.
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An exponential-like trace phenomenon.

Definition (Fundamental matrix) to be revised

1 In the context of slide 5, let us suppose that M is finite-dimensional.
We will say that a finite family (Yi )i∈I is fundamental if it is a
k-basis of Solnk(L) ∩M.

2 In the case when M = kn, I = {1, · · · , n} and Yi =t (y1
i , · · · , yni ),

the matrix whose colunms are the Yi i.e.y1
1 · · · y1

n
...

. . .
...

yn1 · · · ynn


will be called a fundamental matrix for Y ′ = A.Y (where A is the
matrix of F ∈ Endk(M) in the canonical basis).
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Examples cont’d and unfold/2

9 The wronskian

W = wr(1,Lix1 ,Lix0x1 ,Lix1x0x1 ,Lix0x1x0x1 ,Lix2
0 x1x0x1

)

is the determinant of the matrix

Mx2
0 x1x0x1

=

1 Lix1 Lix0x1 Lix1x0x1 Lix0x1x0x1 Lix2
0 x1x0x1

0 (1− z)−1 ∗Lix1 ∗Lix0x1 ∗Lix1x0x1 ∗Lix0x1x0x1

0 (1− z)−2
...

...
...

...

 (7)

10 This matrix is fundamental for the C(z)6 evolution equation.
Y ′ = AD

x1x0x1x
2
0

Y and it satisfies W ′ = tr(AD
x1x0x1x

2
0

)W please check ! (see,

[11] Ex. 1.14.5, with Dw = z−|w |x0 (1− z)−|w |x1Lw ).

W ′ =
15z − 11

z(1− z)
W =

11(z − 1) + 4z

z(1− z)
W = (

−11

z
+

4

1− z
)W whence

W = λ1.exp(
∫ 4

1− z
− 11

z
) = λ2.

1

(1− z)4
.

1

z11
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x2
0x1x0x1 x2

0x1x0 x2
0x1 x2

0
x0 1

x0x1x0x1 x0x1x0 x0x1

x1x0x1 x1x0 x1

∂|z−1 ∂|z−1 ∂|z−1

∂|z−1 ∂|z−1

∂|z−1

∂|z−1

∂|z−1

∂|(1− z)−1

∂|(1− z)−1

∂|(1− z)−1

Figure: Structure of the differential module Mw for w = x2
0 x1x0x1. The C-vector

space Vw of all solutions of Lw̃ .y = 0 is in red and actions of ∂ are marked edges
with multiplicities after mid i.e. <action>|<multiplicity>
The nodes form a C(z)-basis of the module i.e. the universal module of all
solutions of L.y = 0 with
L = ∂θx1x0x1x2

0
= Lx1x0x1x2

0
= (z5 − 2z4 + z3)∂6 + (15z4 − 26z3 + 11z2)∂5 +

(65z3 − 93z2 + 30z)∂4 + (90z2 − 97z + 18)∂3 + (31z − 20)∂2 + ∂
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A cyclic module

x0x1x0

x1x0

x0

1

∂|z−1

∂|(1− z)−1

∂|z−1

∂|0

Figure: Cyclic (or monogeneous) differential module M = C(z)〈∂〉Liw for
w = x0x1x0. Note that it does not contain the C-vector space Vw of all solutions
of Dw = ∂θw̃ .y = 0. Actions of ∂ are marked edges multiplicities are after mid
i.e. <action>|<multiplicity> one has L = ∂θx0x1x0 =
(z4 − 2z3 + z2)∂5+(10z3 − 16z2 + 6z)∂4+(25z2 − 29z + 6)∂3+(15z − 10)∂2+∂
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A model evolution equation (generalized BTT).

1 Let (A, ∂) be a differential algebra over k = ker(∂) and a differential
field C ⊃ k. We consider an alphabet X and a family of (ux)x∈X of

“inputs”. We form the “multiplier” M =
∑

x∈x ux x ∈ Ĉ.X and
consider the evolution equation in A〈〈X 〉〉

d(S) = M.S ; 〈S |1X∗〉 = 1A (8)

where d is the termwise differentiation

d(S) :=
∑
w∈X∗

∂(〈S |w〉)w (9)
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A model evolution equation (generalized BTT).

2 Under the preceding conditions 1 , we have the following

BTT theorem

The following are equivalent

i The family (〈S |w〉)w∈X∗ of coefficients of S is free over C.

ii The family of coefficients (〈S |y〉)y∈X∪{1X∗} is free over C.

iii The family (ux)x∈X is such that, for f ∈ C and α ∈ k(X ) (i.e.
supp(α) is finite)

d(f ) =
∑
x∈X

αxux =⇒ (∀x ∈ X )(αx = 0) . (10)

iv The family (ux)x∈X is free over k and

d(C) ∩ spank

(
(ux)x∈X

)
= {0} . (11)
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Picard’s process

3 Note that such solutions can be considered as paths S(z) drawn on
the Magnus group (this is more apparent with A = H(Ω) or
A = C∞(Ω;R)). Conversely, every A-path drawn on the Magnus
group are solutions of some system

d(S) = M.S ; 〈S |1X∗〉 = 1A (12)

with M ∈ C+〈〈X 〉〉 for some C a subalgebra of A (in fact C includes
the smallest subalgebra containing the coefficients of d(S)S−1).

4 Conversely, if M ∈ C+〈〈X 〉〉 for some C a subalgebra of the differential
algebra (A, ∂) with a sectiona

∫
, one can construct a solution of (12)

by the Picard’s process. One computes the limit limn→+∞ Sn where

S0 = 1X∗ ; Sn+1 = 1X∗ +

∫
M.Sn . (13)

aNot all differential algebras possess such a section (as C(z) for instance).
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About sections

5 The best example of section is
∫ z
z0

. Let Ω be a domain (i.e.
connected open subset) of C

6 Then f 7→
∫ z
z0
f (s)ds is a section for (H(Ω), d

dz )

7 For this section, Picard’s process applied to the NcEvEq
(noncommutative evolution equation)

d(S) = M.S ; 〈S |1X∗〉 = 1A; M =
∑

x∈X ux x

has for limit S =
∑

w∈X∗ αz
z0

(w)w .

8 It is sometimes hepful to use other (more adapted) integrators which
should always (I insist) be considered with care, i.e. with their
domains.
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Reserve : Application to the freeness of solutions of
L.y = 0

In fact, let us consider y1, . . . , yn a set of C = ker(∂)-independent solutions
of L.y = 0. Stringing t(y , y ′, . . . , yn−1), we get a set of solutions of

y
y ′

...
yn−1


′

= CompMat(L)


y
y ′

...
yn−1

 (14)

where CompMat(L) is the companion matrix of L, we can apply the
lemma to see that the strings t(yi , y

′
i , . . . , y

n−1
i ) are all linearly

independent over k and then so are y1, . . . , yn. This can be, in particular,
applied to the modules of polylogs.
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A simple transition system: weighted graphs

P

B

C

M

D

L

3

10

10

10

4 9

4

5

10

Figure: Directed graph weighted by numbers which can be lengths, time
(durations), costs, fuel consumption, probabilities. This graph is equivalent to a
square matrix. Coefficients are taken in different semirings (i.e. rings without the
“minus” operation, as tropical or [max,+]) according to the type of computations
to be done. Tropical mathematics were so called by MPS school because they
were founded by the Hungarian-born Brazilian mathematician and computer
scientist Imre Simon.
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A small tribute to MPS or Marco as we used to call him

Figure: Marcel-Paul Schützenberger at Oberwolfach (1973)1

1Contrary to 1972 (Wikipedia)
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Multiplicity Automaton (Eilenberg, Schützenberger)

1

2 3

4

5

a|α1

b|α2

b|α3

c|α5

c|α7

a|α8

a|α9

c |α4

ν1

ν2

η1

η2

1 S. Eilenberg, Automata, Languages, and Machines (Vol. A) Acad. Press, New York,
1974
2 M.P. Schützenberger, On the definition of a family of automata, Inf. and Contr., 4
(1961), 245-270.
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Multiplicity automaton (linear representation) & behaviour

Linear representation

ν =
(
ν2 ν1 0 0 0

)
, η =

(
0 0 η1 0 η2

)T

µ(a) =


α9 α1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 α8
0 0 0 0 0

 µ(b) =


0 0 0 α2 0
0 0 α3 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



µ(c) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 α5
0 0 0 0 α7
0 α4 0 0 0



Behaviour

A(w) = ν µ(w) η =
∑
i,j

states

ν(i)
(∑

weight(p)
)

︸ ︷︷ ︸
weight of all paths i© → j©

with label w

η(j)
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Construction starting from a series S (and actions x−1).

States u−1S (constructed step by step)

Edges We shift every state by letters (length) level by level (knowing that
x−1(u−1S) = (ux)−1S). Two cases:
Returning state: The state is a linear combination of the already created
ones i.e. x−1(u−1S) =

∑
v∈F α(ux , v)v−1S (with F finite), then we set the

edges

u−1S
x|αv−→ v−1S

The created state is new: Then

u−1S
x|1−→ x−1(u−1S)

Input S with the weight 1

Outputs All states T with weight 〈T |1X∗〉
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From theory to practice: Schützenberger’s calculus

From series to automata

Starting from a series S , one has a way to construct an automaton
(finite-stated iff the series is rational) providing that we know how to
compute on shifts and one-letter-shifts will be sufficient due to the formula
u−1v−1S = (vu)−1S .

Calculus on rational expressions ([1], lemma 7.2).

In the following, x is a letter, E ,F are rational expressions (i.e. expressions
built from letters by scalings, concatenations and stars)

1 x−1 is (left and right) linear

2 x−1(E .F ) = x−1(E ).F + 〈E |1X∗〉x−1(F )

3 x−1(E ∗) = x−1(E ).E ∗
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Computations with “returning states”.

With (2a)∗(3b)∗ ; X = {a, b}

(2a)∗(3b)∗ (3b)∗

a|2

b|3

b|3

1

1

1

With (t2x0x1)∗ ; X = {x0, x1}

(t2x0x1)∗ tx1(t2x0x1)∗

x0|t

x1|t

1

1
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In general: returning edges

S

a−1S b−1S

(a)−2S (ab)−1S (ba)−1S (b)−2S

(a)−3S (a2b)−1S (ab2)−1S

a|α1,a b|α1,b

.|.
.|.

.|.
.|.

.|.

.|.
.|. b|α...

.|.

.|.

.|.

.|.

a|α...
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Use of this transition structure

Automata with multiplicities is an elegant way to code

Algebraic numbers

Continued fractions (quadratic irrationalities, Lagrange’s theorem, see
Knuth)

Markov chains (several transition matrices)

Finite-length (e.g. finite-dimensional one the ground field of the
algebra) modules

In particular differential modules
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Constructions with differential modules

Let (k, ∂) be a differential algebra (over its ring of constants C = ker(∂)). Recall
that

1 The C -algebra of differential operators is

k[∂] = k ∗Z Z[∂]
/(
∂.a− (a′ + a.∂)

)
2 (Normal form) Every element L of k[∂] expresses uniquely as

L =
∑n

j=0 aj∂
j with aj ∈ k

3 Note that k[∂]is only a k-bimodule and NOT a k-algebra (only a C -algebra).

4 There is a euclidean division (but one must precise if it is left or right).
Same thing for the extended euclidean algorithm.

5 A differential module M over (k, ∂) is simply a (in general left-) module over
k[∂]. This is equivalent to the data of

1 A k-module M
2 ∂M ∈ EndZ(M) such that for all (a,m) ∈ k×M

∂M(a.m) = ∂(a).m + a′.∂M(m)
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Representations

1 k-differential modules for a category (see [11] p44 “ The category of
all differential modules over k will be denoted by Diffk”).

2 On a graphical level, a differential f.g. module M can be represented
as a marked graph (only the transition structure of an automaton i.e.
without initial and final states)

1 A set of states (elements of a generating set)
2 Transitions

p
∂|α

q

3 Then, we can use the richness of constructions of automata theory to
concretely compute with differential modules.

4 Mainly, we can do: direct sums, quotients, tensor products, and
(various) shuffle products of automata.

5 Let us first make precise what is a linear representation of an
automaton. It is due to the following theorem (Abe, Sweedler).
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Rational series (Sweedler & Schützenberger)

Theorem A

Let S ∈ k〈〈X 〉〉 TFAE
i) The family (Su−1)u∈X∗ is of finite rank.
ii) The family (u−1S)u∈X∗ is of finite rank.
iii) The family (u−1Sv−1)u,v∈X∗ is of finite rank.
iv) It exists n ∈ N, λ ∈ k1×n, µ : X ∗ → kn×n (a multiplicative morphism)
and τ ∈ kn×1 such that, for all w ∈ X ∗

(S ,w) = λµ(w)τ (15)

v) The series S is in the closure of k̂.X for (+, conc ,∗ ) within k〈〈X 〉〉.

Definition

i) A series S which fulfills one of the conditions of Theorem A will be
called rational. The set of these series will be denoted by k rat〈〈X 〉〉.
ii) The triple (λ, µ, τ) as in (15) is called a linear representation of S .
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Concluding remarks

1 The category Diffk of differential modules has many properties in
common with transition structures emerging from automata theory
(direct sums, quotients and tensor products which the law of shuffle
products).

2 Evolution equations is a wide domain still under development with all
kinds of tools (some rigorously, some loosely defined) that we can
inherit from combinatorial physics and adapt to our situation.

3 Modules M(w) from polylogarithms give a first example of concrete
studies

4 Other modules can be obtained from coordinates of solutions of
S ′ = M.S with M ∈ C+〈〈X 〉〉 (next time together with generalized
BTT).
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Concluding remarks/2

5 Indeed, our finite-dimensional differential modules are torsion
modules.
https://en.wikipedia.org/wiki/Torsion_(algebra)

6 For these modules Lam’s theorem (2007, not very difficult but very
deep categrically speaking) (see [9] Ex. 10.19 p233) is central and
connects their category with Ore rings.

7 Next time, more on combinatorics of cyclic modules.
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THANK YOU FOR YOUR ATTENTION !
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Montréal, Clarendon Press, Oxford (1993)

[11] Van der Put, Marius, Singer, Michael F., Galois Theory of Linear
Differential Equations, Springer; (2002)

[12] M. van der Put, Recent work on differential Galois theory, Séminaire
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